Single-unit activity related to bimanual arm movements in the primary and supplementary motor cortices.
نویسندگان
چکیده
Single units were recorded from the primary motor (MI) and supplementary motor (SMA) areas of Rhesus monkeys performing one-arm (unimanual) and two-arm (bimanual) proximal reaching tasks. During execution of the bimanual movements, the task related activity of about one-half the neurons in each area (MI: 129/232, SMA: 107/206) differed from the activity during similar displacements of one arm while the other was stationary. The bulk of this "bimanual-related" activity could not be explained by any linear combination of activities during unimanual reaching or by differences in kinematics or recorded EMG activity. The bimanual-related activity was relatively insensitive to trial-to-trial variations in muscular activity or arm kinematics. For example, trials where bimanual arm movements differed the most from their unimanual controls did not correspond to the ones where the largest bimanual neural effects were observed. Cortical localization established by using a mixture of surface landmarks, electromyographic recordings, microstimulation, and sensory testing suggests that the recorded neurons were not limited to areas specifically involved with postural muscles. By rejecting this range of alternative explanations, we conclude that neural activity in MI as well as SMA can reflect specialized cortical processing associated with bimanual movements.
منابع مشابه
Neuronal populations in primary motor cortex encode bimanual arm movements.
Previous studies have shown that activity of neuronal populations in the primary motor cortex (MI), processed by the population vector method, faithfully predicts upcoming movements. In our previous studies we found that single neurons responded differently during movements of one arm vs. combined movements of the two arms. It was, therefore, not clear whether the population vector approach cou...
متن کاملTwo Distinct Ipsilateral Cortical Representations for Individuated Finger Movements
Movements of the upper limb are controlled mostly through the contralateral hemisphere. Although overall activity changes in the ipsilateral motor cortex have been reported, their functional significance remains unclear. Using human functional imaging, we analyzed neural finger representations by studying differences in fine-grained activation patterns for single isometric finger presses. We de...
متن کاملPrimary and supplementary cortex in bimanual movements: a study of cortical physiology
The study of bimanual coordination is an area of intense recent research. This contrasts with a relative lack of interest in bimanual coordination – particularly in the area of cortical physiology – over the preceding years. This increased recent interest has been fueled in part by new theoretical approaches and recording techniques that place an emphasis on the role of neuronal interactions in...
متن کاملThe effect of handedness on cortical motor activation during simple bilateral movements.
The neuronal correlates of handedness are still poorly understood. Here we used event-related functional magnetic resonance imaging to investigate the impact of handedness on neuronal activation of the primary sensorimotor cortex, supplementary motor area and dorsal premotor cortex during simple unilateral and bilateral finger movements. In 16 right-handed and 16 left-handed individuals, we map...
متن کاملSupplementary motor area exerts proactive and reactive control of arm movements.
Adaptive behavior requires the ability to flexibly control actions. This can occur either proactively to anticipate task requirements, or reactively in response to sudden changes. Here we report neuronal activity in the supplementary motor area (SMA) that is correlated with both forms of behavioral control. Single-unit and multiunit activity and intracranial local field potentials (LFPs) were r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 88 6 شماره
صفحات -
تاریخ انتشار 2002